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ABSTRACT SRR

Let 0 be a finitely connected closed point set in the complex plane

with a piecewigse smooth boundary 9. The approximation of functions analytic
on Q by rational functions determined by interpolation or least squares
approximation at preselected nodes is discussed. Attention is focussed on
simple methods for selecting an appropriate rational space and obtaining a
fairly well-conditioned rational basis. Applications include the
determination of conformal mappings. Numerical examples illustrate the

approximation method.

AMS (MOS) Subject Classifications: 6SE0S, 65D05, 30C30
Key Words: rational approximation, interpolation, least squares
approximation, conformal mapping, analytic continuation.
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SIGNIFICANCE AND EXPLANATION k
b
o
Complex rational approximation by interpolation has a long history in the .
theory of approximation. The following numerical questions, however, do not
appear to have received much attention: ;i‘
1) Given a region on which an analytic function shall be approximated by .
rational functions, and given a set of interpolation points on the .
boundary of this region, how should one numerically determine a suitable q.4
rational space? .
2) How Jdoes a well-conditioned basis of this rational space look? RN

3) 1If one is free to select interpolation points on the boundary, how should
they be chosen?
4) Can the selection of the rational space be simplified if one allows least

squares approximation instead of interpolation?

The present paper discusses these questions. 4
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ON COMPLEX RATIONAL APPROXIMATION
BY INTERPOLATION AT PRESELECTED NODES

Lothar Reichel
1. Introduction

Let © be a closed region of finite connectivity in the complex plane,
and assume that the boundary 9R is piecewise smooth. Let £(z) be a
function analytic on fI and assume that f£(z) is explicitly known on 31 or
on a finite point set on 23l. The purpose of the present paper is to describe
a numerical method for determining a rational approximant r(z) to f£f(z) on
1. The method consists of the following steps
1) select finitely many nodes &z, in the point set of 30 on which f£({z)

is known.

2) choose a rational space from which the approximant r(z) is to be
selected. The choice will depend on the distribution of nodes z,.

3) select a well-conditioned basis of the rational space.

4) compute r{z) by interpolation or least squares approximation at the
nodes 2.

Complex approximation by interpolation has a long history in the theory
of approximation. Our scheme differs from previously described methods, see
{11, (31, {7}, (9], in that we use the selection of nodes as starting point.
This allows us to treat cases when f(z) is known on a finite point set only,
and it also allows us to let the allocation of nodes depend on properties of
f(z). In turn we discuss necessary and sufficient conditions on the selection
of rational space (section 2), a simple method for choosing rational space

(section 3), the selection of nodes (section 4), choice of rational basis

(section 5), and approximation on multiply connected regions (section 6). We

Sponsored by the United States Army under Contract No. DAAG29-80-C-0041.
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present applications to conformal mapping, and indicate generalizations to the
numerical solution of Dirichlet problems for the Laplace equation on multiply
connected regions (section 7). Comments on approximation by the discrete

least squares method conclude the paper (section 8).
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2. Convergence results J
Throughout this paper {zk m}:-1 denotes a set of interpolation or least AJ
’
-1 .
squares nodes on 3. The set {wk n}:=1 denotes a set of not necessarily ii*
[

distinct poles in ﬂc, the complement of Q with respect to the extended _-f
complex plane, and defines the rational space _f?
-1 -1 -1 n-1 -1 -

2.1 = - eoe . i
( ) Qn : span{1,(z-w1'n) . (z-w1'n) (z wz'n) . '1;1 (:-'k,n } ® |
The approximation error we measure in the maximum norm g
-3
1£1 := max [f(z)| . 3
F1y) ;

zedQ -
®

The next definitions follow (9].
Definitions.
lLet the real valued function o0 be positive a.e. on a Jordan arc Y,

and assume IY g(z)|dz] = 1. The direction of integration defines an

L
orientation on Y, and we let z be the first point of Y. The mapping , }

F:v+ (0,1, P(C) := IC' a(z)|dg| defined by integration along in the -~
Y c »"1
positive direction has an inverse a.e. . For a sequence of gets {;kn}:=1' T

n=1,2,3... of points Ckn on Y, let for congtants 0 < d1 <dy < 1,

N (d,,d,) denote the number of points of {;kn} on the subarc of Y with

n
k=1

-1 -1 1
b end points F '(d4) and F '(dy). If 1lim " Nn(d1,d2) = d, - dy,

n+o
vd1,d2, ¢ < a,y < d2 < 1, then the point sets are said to be uniformly

n

é! distributed on Y with respect to ¢ as n » =, A set [;jn}j=1 of points

4

. Cjn on Y is said to be equidistributed with respect to Y if 1
1 -1 -1 1 :
3 F (ck,n) - F (Ck-1,n) = ¢ k= 2(1)n. Sequences of equidistributed sets 3
E' are uniformly distributed. The definitions carry over to Jordan curves if we .'
- » * =~
:, let ¢ be a point on the curve, and identify the curve with an arc with g [i;
?: both as first and last point. L
p (] 1
¢ L2
- -
. -3- R
¥ 3
4 -
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The following theorem covers approximation on bounded simply connected

regions. Extensions are provided in the remark below.

Theorem 2.1

Let T and T be piecewise smooth Jordan curves, T
nodes poles poles
containing T in its interior, and T n T = fg. Let S denote
nodes poles nodes
the open region between T and T « Let U(z) solve th- Nirichlet
nodes poles
problem
/
u(z) is harmonic in S as a function of
Xy, 2 =X +iy, x,y real
. U U
(2.2) < U(2) is continuous on S rpoles rnodes
u{z) = 1 on
nodes
U(z) =0 on T
L poles
Let %; denote the outward normal derivative with respect to S. Then
du(z) au(z)
(2.3) c = - lazl = =/ s ldzl >0 .
nodes poles

Let f(z) be a function analytic on and interior to K} = {z, U(z) = u1},
1

where u_ is a constant 0 < u_ < 1. Let {zk n}:-1' n=12,3... bea
,n’ k=

1 1
sequence of points sets on rnodes uniformly distributed with respect to
gL > ® alet | 1™ n=2,3,4 b £ poi
c 3n as n ¢ an e wk,n k=1’ ¢e3,4,04. e a sequence of point
-1 30

sets on T uniformly distributed with respect to =-c <. Let the sets

poles an

-1
{wk n}:=1 define a sequence of rational spaces Q. n =2,3,4... , see
’

(2.1). Then r_€ Q , uniquely determined by interpolating €(z) at points
n n

}n

in the set ({ k=1

converges to f(z) on and interior to Fu « for all

zk,n 2

0 < u2 < W, as n > o,

The rate of convergence is given by

-2w(u1-u2)

(2.3) lim max |[f(z) - r (z)l'./n < e .
n
n+e z@l
M2
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If the sequences {zk n}:-1' {wk m}::: are uniformly distributed with respect
[ ”

to another density function such that

_ 1 n 1 n-1

(2.4a) v (z) := n ) lnlz-zk'nl ~n ) lnlz-wk'n_1|
k=1 k=1

(2.4b) ;:: Vn(z) =; V(z) is nonconstant on rnodes v

then there is a function g(z) analytic on and interior to rnodes' such

= = 1(1 ig-r | - 0 s
that rn(z) e Qn' rn(zk,n) f(zk,n)' k (1)n, and g- L a
nodes

n’-.

Proof. Equations (2.2) have a unique solution U(z) with %g >0 a.e, on

. Green's formula yields (2.3). By

3y
r and <0 a.e. on rpoles

nodes an
studying potentials (2.4a) Walsh has established the connection between the

LY

level curves of U and the rate of convergence, see the proof of Theorem 9 in
Walsh [10], ch. 8. 1If the limit potential V(z) in (2.4) is nonconstant on
rnodes' then there are points § ¢ :2 € exterior of rnodes such

-1
that V(C1) > V(Cz). et g(z) 3= (z-Cz) . and let T e Qn interpolate

er
1 nodes

g(z) at gz = Zy ,n k = 1(1)n. Then by [10], ch. 8,
n g .~z n-1 g _-w
g,y -r ()= = E‘fzy‘ T | ;—2_"—“,‘
k=1 *2 "nk k=1 *1 "nk
and
Inlg(g,) - r (5,)] = n(v (g)) =V () .
Since Vn(C1) - vn(cz) hd V(C1) - V(‘Z) = § >0, n+=> ,

Ig(c1) - rn(c1)| = en6 > %, pre

which shows divergence and completes the proof.




'

-rv‘gr, v g
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Remark 2.1

The distribution of nodes and poles described in the theorem is invariant
under conformal mapping, see [10), section 9.12: Let ¢ map S conformally
and 1 to 1 onto ¢(S) and be continuous and 1 to 1 on

s T r . If the node sets {z }

nodes poles
-39}

-1
with respect to c 5; as n + ®, where U solves (2.2), then the

}

n
xn k=1 2Te uniformly distributed on

l'.nodes

node sets {¢(z

-1 U
to c¢ 3;2 as n + ®, where U solves the Dirichlet problem analogous to

¢
(2.2) on the mapped region ¢(s uT

are uniformly distributed on ¢(Pn ) with respect

) n
kn " k=1 odes

nodes rpoles)’ and S T

au

—JQ(z)Idzl. Similarly, if {w }n-1 are uniformly distributed on
¢(rnodes) an kn k=1

-1
r with respect to -c
poles

%
a

n-1
as n + ®, then the sets {¢(wkn)}k=1 are
-1 v
uniformly distributed on ¢ (T ) with respect to ~-c¢ —L
poles ¢ Oon

Especially theorem 2.1 holds also if T is exterior to T , or if
nodes poles

QL
=

as n * o,

r is a piecewise smooth Jordan arc.
nodes

Remark 2.2

The configuration of curves in theorem 2.1, may consist of several

mutually exterior curve pairs (T }, and the allocation of nodes

nodes’ rpoles
and poles on each pair can be made independent of the allocation on the other
pairs. This follows from the fact that for each curve pair a solution of
(2.2) if extended to the exterior of the curve pair would be constant there.
Its normal derivative on any other curve would vanish. This remark follows

again from [10], ch. 8, theorem 9 and its proof, which covers a more general

situation than theorem 2.1 above.
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We close this section by indicating how theorem 2.1 can be used for

computing analytic continuations. Let f£f(z) be known on a curve T In

nodes”’

many physical problems one may know that f£(z) is analytic in a specific

simply connected region B containing rnodes in its interior. Then let
rpoles be he boundary curve of B. The rational approximants rn computed
as described in the theorem converge to f(z) in the interior of rpoles as

n + o, The next section discusses how the nodes Zyn and poles Wi, can be

allocated without explicitly solving the Dirichlet problem (2.2).
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3. Selection of rational space

We discuss approximation of analytic functions f£f(2z) on simply connected

regions. Our starting point is the assumption that a density function o for

n
the interpolation nodes {zk,n}k=1 on Pnodes is known, and that the nodes
are equidistributed w.r.t. 0. We assume ¢ > 0 a.e. on rnodes' If a set
n
r
of nodes {zk,n}k=1 is given on nodeg’ then we construct a piecewise

linear density function such that the nodes are equidistributed w.r.t. the
constructed density function, which we also denote by 0. A set of poles

-1
{wk n}:-1 defining the space Qn are obtained by solving (2.2) as an initial
, =

]
value problem: U and 5% =g are known on T

determine other level curves of U, on one of which we ~llocate the poles

» and we want to
nodes

Wx,n*

An initial value problem

Assume that T is a smooth Jordan curve. 1If T has corners
nodes nodes

we round them for the present computations. If rnodes is an arc, we replace

the arc by a smooth circumscribing curve, or we could proceed as illustrated

in section 8. First determine a set of n - 1 points {ck n}::: equi~-
’

distributed w.r.t. o. Let W denote the conjugate harmonic function to U

such that W(C1 n) = 0. The conformal mapping

’
~

2+ z=¢(z) := exp(U(z) + iw(z))
maps S, see theorem 2.1 for a definition, conformally on an annulus with

k=1
¢(Ck n) = exp(t + 2ni —;—), k = 1{1)n-1. Now assume that § is exterior to
’

rnodes' By the conformal invariance noted in remark 2.1, the poles
n-1
{w, } should be allocated so that the points ¢(w, ), kx = 1(1)n-1, are
k,n k=1 k,n

equidistant on a circle concentric with the unit circle. Let ¢-1 be the

S b ads
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) . k= 1)n-1 .

For a fixed ¢t = ty, the curve z = z(to,s), 0<€8<2n, is a level curve

of U. We determine such level curves by solving an initial value problem for

the Cauchy-Riemann equations for z = z(t,s),

: az 2z °
l * (303&) 3t = - as .

Initial value problems for (3.3a) are ill-posed, but a low accuracy solution
kil suffices for our purpose, and generally we integrate few steps only. The ill-

. posedness has nov caused any difficulty in the present application. On
. k=1 :
: rnodes (3.1) yields, with 8 = n p k= 1(1)n,
a8 4 -C
iz k+1,n k=1,n

-4 o—— AN —— D ks . .
F‘ (3.4) 55 (1/5) 258 P
b
[
3

Substituting (3.4) into (3.3a), integrating in the positive t-direction with
ﬁi Eulers method with At = As, and denoting the computed approximation of
b

. + ‘-
z(1 At,sk) by Y, yields the scheme 'S

nl
i
ko "2 Cxern

The w lie on an approximate level curve of U, and w, lies
k,n k,n

1 (3.5a) w = g -z o k = 1(1)n-1, Ch T 8qr &y :=¢

k,n n-1

k=1,n

FI approximately on the same gtream line as ck,n' Hence,the Yk,n are
3
approximately equidistributed w.r.t, 5% on a level curve of U.
Ex. 3.1. Let
nodes I

9y (3.6) + 2,625¢cos(2t) - 2.625, y(t) := 3,0625°8in(t-0.2)

be r 1w {z(t) := x(t) + iy(t), x(t) := 1.75.cos(t)

+ 1.225¢3in(2¢t) - 0.6125+gin(4t) + 0.875, 0 < t < 2v} ,

equidistantly w.r.t. arc length on + and

»q
iy Allocate 32 points r
’. p ;k,33 nodes ’.'“j

integrate according to (3.5a). Figure 3.1 is obtained.
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Figure 3.1

The curve (3.6) has been used by Meiss-Markowitz [5) in a quite different

example.

The integration (3.5a) can be repeated by first letting Ck n =W e
’ ’

k = 1(1)n-1, and then performing (3.5a). The integration should be repeated
until the computed level curve intersects itself, and the Wk,n should be
allocated on the last non-intersecting or near-non-intersecting computed level
curve. We motivate this by considering the case where Fn is the unit

odes

circle. Analogous results can be established for more general curves

r .
nodes
Ex. 3.2. Let T ={z : |z| = 1}, and let the interpolation nodes be
nodes
equidistant on T . 8§ 1is exterior to T , and level curves of U
nodes nodes
-10-
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are circles |z! = r > 1. The poles Yi,n will lie equidistantly on a circle .

|z] = r, > 1, and 'lﬁ

-1 -

U(z) = 1 - In|z] (lnlzol) . -
®

At any fixed point z, 1 < |z]| < Ty we have that U(;) increases with k

{zpl. Hence, approximation of analytic functions on the unit disk by .

interpolation at the roots of unity is by theorem 2.1, best done by the family ;_Q
9

of rational functiong which correspond to ro = o, {.,e. polynomials. A

n S

]

When approximation of functions on the region exterior to T , 1is -]
nodes o

- 1

considered, then S 1is in the interior of rnodes' and (3.3a) is replaced by ;

9z oz ]

(3.3b) Y i 3 ° ]

The corresponding difference equation is

(3.5b) wk'n =

Method (3.5) as well as other integration methods for (3.3) have

i
+ 2 (C - ; _1'n)l k = 1(1)n-1l Cn = ;11 Co = Cn_.‘ L4

k,n k+1,n k

been studied in (6] for the case when the function to be continued
analytically is analytic in a simply connected region. The analysis carries
without difficulty over to the present situation.

We conclude this section with some computed examples. All computations
in this paper were carried out on a VAX/780 in double precision arithmetic,

i.e. with 12 significant digits.

Ex. 3.3. Approximate f(z) :=vYz-a on and interior to the curve rnodes of

example 3.1., with a := -2.6325 + { 1.425, sgee figure 3.2

-11=-
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Figure 3.2

The branch of the square root is chosen to make f(z) single valued and
analytic in the plane cut along z :=a + ¢, t < 0. For n =1 + 322,
£ = 1(1)4, we allocate n interplation nodes Zy o equidigtantly w.r.t. arc
’

length on T + Q3 is defined by the 32 poles w

on figure 3.1%.
nodes

3,33

Q

334322 £ =1,2,3 are defined by letting wj'33+32£ 1= w(j mod 32)+1,33 Vj.

Let r (z) denote the element in Q, such that rn(zk,n) = f(zk'n),
X = 1({1)n. 1In figure 3.3 the computed errors are marked with dots.

We note, in passing, that the nodes of course do not have to be allocated
exactly equidistantly w.r.t. arc lengths. Nodes could be marked sufficiently
accurately with a light pen, and also equations (3.3a,b) are sufficiently

simple to allow an approximate graphic solution.
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Figure 3.3

Ex. 3.4. In theory, it is also possible to approximate the function f£(z) of

F n p 4

N example 3.3 by polynomials. Let {‘k,n}k-1 denote a set of n Fejer points .q

for rnodes' For their definition, see [3] or [9]. Figure 3.4 shows the iiﬁ

F 120 =

points [zk,120}k-1 marked with crosses on rnodes' Interpolation of f(z) :{

in n points defines a polynomial pn(z) of degree < n, and the polynomial i;

. o« ]

?f~ sequence {pn(z)}‘ converges maximally to f(z), i.e. p, (z) converges ]
g exponentially to f(z), n+ ®, and there is no polynomial sequence with a

Fﬂ. higher exponential rate of convergence to f(z). l;‘
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Computation of Pn

40
80
120

160

TP ——

Figure 3.4

for some n gave the following table

Nf-p I
nodes

0060
0.42
0.42

impossible to evaluate.

A slow rate of convergence is combined with difficulties of accurately

evaluating p,(2)

’ F
the Fejer points zk'n

for large n.

were determined with 4 significant digits.

A Lagrange polynomial basis was used, and

.~ —

1 e e C—

Ex. 3.5. Approximate f£(z) = /(z~z’)(z-z2) on and exterior to rnodes
4 defined by (3.6), where z, - 4-24, z, = i, see figure 3.5.
r‘
3
b 4
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Figure 3.5 Pigure 3.6

The branch of the square root is chosen so that zf(z) is analytic in
the finite plane cut between z; and g,. We wish to approximate f(z) by
interpolation in 33 nodes equidistant w.r.t. arc length. PFigure 3.6 shows 32

points ¢ allocated equidistantly w.r.t. arc length on T » and also

3,33 nodes
32 poles wj'33 obtained by applying (3.5b) once. ry3 denotes the rational
interpolant to f(z) in 034, see below.
Allocate 65 interpolation nodes on rnodes equidistantly w.r.t. arc
length. Let ¥4,65 = ¥i+32,65 ™ ¥4,337 J = 1(1)32. This defines Q¢s°

Let rgg be the interpolant to f(z) in Qg¢g. We obtain

n eer 1o
nodes
33 101072
65 101074 .
-
-15-
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4. Selection of nodes

If f(z), the function to approximate, is known on a discrete point set
only, there may be no choice to make. In this section we assume that f(z)

is known everywhere on rnodes' If no knowledge of the location of the

singularities of f(z) is available, we want an allocation of nodes such that

the orthogonal distance from a point of rnodes to level curves

{z : ulz)) =p}, p >0, |is approximately constant for all points of rnodes'

Then the rate of convergence will depend on the distance from rnodes to a

singularity of f(z) closest to rnodes' This is, to a first approximation,

achieved by allocating the nodes equidistantly w.r.t. arc length.
Knowledge about the location of the singularities of f(z) can be used

by allocating more nodes on parts of T close to a singularity. The

nodes

level curves of U(z) will be close to Pn where the node density is

odes

highest. Example 7.2 provides an illustration.
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S. Rational basis

The basis implicit in the definition (2.1) of 2n is generally ill-

conditioned. If the nodes Zx,n and poles ¥g,n are near-equidistributed

with respect to Ic-1 %ﬁ' on Fn and T

odes poles’ respectively, then the

n-1 z-zk n n-1 zk n-'k n
basis Lo(z) = 1, lj(z) = 1 z—_;—- o I ‘—z:——‘—, j = 1(1)n=-1, is
k=1 j,n k,n k=1 k,n
k< 3

fairly well-conditioned. A condition number of a basis we define following
n-1
Gautschi [ ], with the map F : R - Q :a-+ Z at (z), where a =
n n = k=0 k 'k -
(ags3yseeesa _4). Equip R with the maximum norm lal_ := maxia | and

Qn with the norm | lr « The induced operator norms are
nodes

n~-1 n=-1
Irnl = max 1) aklk(z)lr =  max ) Ilk(z)l '

] gl.ﬂ 0 nodes zel nodes k=0

-1
iFr 1 ;= max flal <2 ,
n -

n=1
1 % aklk(z)l

nodes

and the condition number of the basis lj(:) is

n-1
-1
cond F_ := IF 1 IF 1 < 2 max )) It (2)] € 2n ¢ max B2 (2)1 .

zernodcs k=0 0<k<n-1 nodes

Assuming that the Zy s W, are uniformly distributed with respect to

-1.9U
L Is;l, we have for k # 0,

n-1

1
nle, (2)) = (n-1)(—=5 (321 Inlz-z, | - 1n|zk,n-zj,n|)
37k
1 n-1
- = (321 lnlz-wj'n_1| - 1n|zk,n."j,n-1|))

-1,3U

-1.9U
= (n=1) (Jpnodeslnlz=tlc I35 (0] lag] - frnodes‘“"x,n"'° I3, (€)1 lagl +

-17-
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-1,3u -1,3u
- fp ialz=tlcT 5, @)1 Ha&l + [ nlz <gle Tlyn (o)) ldzl o+

poles poles .
1
in(n) _

o(==)) ’
for any fixed z eT s 2 # 2 as n + @, Hence, |2 (z)| =o0(n), k = o
nodes j,n1 k o
o(1)n-1, for any fixed z €T , n+ @, This shows that the basis .
nodes -

-1

{lj};so is reasonably well-conditioned. ’
-4
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6. Multiply connected regions

We consider the approximation of a function £(z) on an exterior doubly
connected region. Generalization to more complicated regions are immediate.
Let f(z) be analytic on and exterior to the piecewise smooth curves Y1 and

12. Yi bounds the region Qi, see figure 6.1.

Figure 6.1

We wish to approximate f(z) by a rational function which interpolates
£f(z) in nodes on Y, and Yye During the allocation of poles we can regard

the problem as if it were composed of the two simpler subproblems:

Approximate fi(z), analytic on and exterior to Y,, i = 1,2, and

i

fz(o) = 0. Consider the case i = 1., Assume n nodes {zii)}:=1 and a

1
density function o( ! are known on 71. The method of section 3, yields

1
poles w( ), k = 1(1)n-1, 4in 91, and this defines the space

k
(1) (1) -1 n-1 (1) -1
(6.1) Q s= span{1, (z-w ) goeve, || (z~w ) }
n 1 k=1 k
and basis
( (1) (v) (1)
n~-1 z-z n-1 z -w
(1 - i L S— | = -
lk (z) : n TTEREE | m e k 1(1)n-1
=1 Z, -wj =1 z-wj
(6.2) ¢ %
(1)
lo (z) := 1 .
.
-19-
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Repeat for problem i = 2.

2

to contain constants.

Y.. Since fz(w) = 0,

2
Nodes z( ), k= 1...m

X are assumed to he known on

the rational space we are to construct does not have

2
We can identify the nodes zi ) with the points ¢

k
2
of section 3 and obtain poles wi ), k=1,...,m, defining the space
(2) (2),-1 " (2) -1
(6.3) 0 := span{(z-w Y seee, T {2-w y '}
m 1 k
k=1
and basis
ne bast (2) (2)__(2)
(2) m z-z, moz -wj . 1
2k (z) := .H 2y () T ) i=1(1)m .
j=1 zZ, "Zp j=1 z-wj
j#k
: . (1) (2)
To solve the original problems, we select the function L e Qn ® Qm
’
1 2
which interpolates f(z) in {zi )}:=1 U {zé )}:=1. Convergence results

analogous to theorem 2.1 can be shown, see remark 2.2, provided that both

n,m * o,

conditioned on Y1l’ Y

{2y
1

and |

used in section 5.

nodes and poles.

Ex. 6.1.

The basis {2

, k= 1(1)m are small.

(1) (1) (2) (2)

0 ,..-,1n_1, 21 ,ooo,lm } iS fairly well-

1
under the assumption that nzi )l . k =1(1)n=-1,
2

The method of proof is similar to that

2’

The assumption is reasonable due to the relation between

/ -1 i -
Let f(z) =/ (z+ %)(z+ %) o (z+2) + /Qz-z- %)(z-2+ %) * (2-2) !

where the branches are selected so that the first term is analytic in the

complex plane cut along the line segment between

S5 4 aeo3d s
z 3 an z = s an

the second term is analytic in the plane cut along the line segment between

i
z =2 + = and

z =2 - i.

2 > Approximate f(z) in the region exterior to both
curves
Yy = {z =2 + cos(t) + i°sin(t)(2 + cos(t))z, 0 < + < 2n}
Y, = {z = -2 - sin(t)(2 + cos(t))z + iecos(t), 0 < t < 2n} .,
Figure 6.1 shows Y1, Y2 and the branch points of f(z) marked with crosses
inside Y1 and yz.
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Figure 6.2

We wish to interpolate f£(z) in 31 nodes z:') equidistant w.r.t. arc

length on 71, and in 30 nodes ziz) equidistant w.r.t. arc length on Yz.

)

1
Pigure 6.2 shows 30 points ;; equidistant w.r.t. arc length on Y,: the

30 points ziz) = c£2) on Yz' and the poles w;1) and w;2) obtained by

applying (3.5b) twice for each curve Yi' Denote the interpolating rational

approximant by r(z). Then

1 - rl =410 , Nf -1l = a4e10"" .
Y v

1 2
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7. Applications to Dirichlet problems and conformal mapping

The close connection between rational approximation and approximation by
rational harmonics, see [11], suggests applications to the numerical solution
of Dirichlet problems for the Laplace equation on simply and multiply
connected regions. We discuss in some detail the special Dirichlet problems
whose solution yields a conformal mapping from a simply connected region to
lwl » 1 or to |w] € 1.

Let f be simply connected with boundary 23 =T and complemert

nodes
8 . Allocate nodes z., j = 1(1)2n-1, on T for some n. Determine
c B) nodes
n-1 points £ on T + such that the distribution functions for =z,
3j nodes J

and Cj agree. Allocate n-1 poles wj in QC by application of (3.5a) or
(3.5b). This defines the 2n~1 - dimensional space of harmonic functions

(7.1) span{f, (z), Re(L (z)), Im(2 (2)),...,Re(L _, (2)),Im(2 _ (z))} ,

where
/
L := 1
0(z)
(7.2) < n-1 z-z n-1z_ -w
L) = o1 ——Ee o 2k ey
J k=1 %23 %2k k=1 Z "¢
L k3
An approximate solution to
Au =0 in Q
u=qg on 9df
is obtained by solving
n-1
(7.3) Re ( Z aft (z)) =g4g(z,) , 3= 101)2n-1
k=0 <K J

for the ay . This system may not always be uniquely solvable, which is why,

in the computed examples below, we solved (7.3) by singular value

-22a
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X decomposition of the matrix. 1In none of the computed examples the matrix was 'i
g . @
A

: ar-si lar. .
L_ ne ngu -_J
The special choice » 4

(7.4) g{z) = ~1nlz]|

leads to approximate conformal mappings for  provided that 0 ¢ Q. 3

Ex. 7.1. Let 2 be the bounded region of figure 3.5. Compute a conformal
E mapping ¢ : 2 + |w| € 1, such that ¢(0) = 0. Allocate 129 nodes zy on ,j
[_. 30 equidistantly w.r.t. arc length. Use the poles {wj}:;:‘ shown in figure .' ;
? 3.1, and Qefine Wi+32 PT Wy j = 1(1)32. Thus we obtain a basis (7.2) for ?
é> n = 65, and solve (7.3) with g(2) defined by (7.4). This yields .':
[ 64 D
: 065(2) = 2 exp(kz0 aklk(z))

which approximates ¢. Figure 7.1 gshows ¢65(39) and a reference circle of

radius 1.1. The error l|¢65(z)| -1 = 7-10—5 is well below the

E1¢)

resolution of the picture.

¢ . (3Q)

‘ 65

re 3

3

u

-

ME

L

F' Figure 7.1
) o
3
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Ex. 7.2. Let £ be the exterior of the curve in figure 7.2. Compute a
conformal mapping ¢ : Q@ + |w| » 1, such that Y(®) = @, Allocate 65 nodes %
z; on 9%, equidistantly w.r.t. arc length, and use the 32 poles vy of —.4

fiqure 3.6. Solving (7.3), with g defined by (7.4), one obtains the

approximate map

n-1
(7.5) ¥ (z) 1= z expl ) a2 (z))
n k k
k=0
for n = 33.
n
z{z) —
2 (0)
z(%;)ﬂ &
s )
-
!
@ Figure 7.2 Figure 7.3
-
]
9

) Figure 7.3 shows ¢33(3Q) and a reference circle of radius 1.1.
: -2
;. ﬂ|w33(z)| - 1599 = 310 . ¢33(3Q) intersects itself at the blob, which is [

roughly the image of the part of 3, which lies strictly interior to the ]
s )
- convex hull of 4. This suggests that in order to achieve higher accuracy -
3 n 3n . . 1
E. more nodes should be allocated between the points z(;) and z(;‘) in figqure !p*
3 .
}
- ~-24-
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7.1. The allocation of nodes to be described next is simplified by the fact

d(arc lenth)

&~ const
3¢ stant,

that the parameter t in (3.6) satisfies
0 <t < 2r, (Figure 2.2 shows 32 points on 230 equidistant w.r.t. t.) This
simplifies the determination of the nodes and poles to be used, but is not
essential for the discussion, why we chose not to use this fact in the first
part of this example. Figue 7.1 shows 32 points marked with crosses on T

and allocated equidistantly with respect to the boundary parameter t, see

(3.6). In figure 7.4 we have allocated 11 points [ equidistantly with

b
"
respect to t for 0 < t < ;, 44 points ;j equi-distantly with respect
" 3n
to t for T < t < T—, and 11 points equidistantly with respect to

2

3n
t, o €t ¢<2n, By (3.5b), we obtain 66 poles wye and finally we allocate

133 nodes on I having the same distribution as the g This yields the

j.
mapping ¢67(z). Figure 7.5 shows ¢67(P) and a circumscribed concentric
-3
reference circle. I|¢67(z)l - 1'P = 3410 .
Figure 7.4 Figure 7.5

-25-
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The abbreviation error is near the resolution of the plotter. Double the

number of poles in figure 7.4 by wj+66 := wj, j = 1(1)66. This yields
4 X 66 + 1 = 265 harmonic basis function, which we determine by interpolation ;
at 265 points zy which we allocated with the same density function as we '
-6
used for ¢67' This gives ¢133(z) and l|¢133(z)| - 1'? = 6+10 , Figure
7.6 shows ¢‘33(39) and a reference circle of radius 1.1. i
o
| .
e .
3
b
g
!
L
..
L N
1 Figure 7.6
:
P
o .
:
k-
L.
re ®
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8. Least squares approximation

We consider an example, where the distribution of nodes and poles does
not agree very well with the conditions of theorem 2.1, and point out that in
such cases least squares approximation may give higher accuracy than inter-

polation.

Approximate f(z) := ¢z2-1 on 3 = [-54,51i], by using function values
-1
at equidistant nodes L i(10 5;- -~ 5), k= 1(1)m, on 92. The branch
’

of the square root is chosen to make f(z) analytic in the finite plane cut
on the real axis from 1 to «® and from -1 to =-», The poles we allocate
in a simple manner: for n even, let for some s > 0

2k=2
w2k,n H 1(10 n=2 - 5) + 8 " n
k = 1(1) 3 .
2k=2
w2k-1,n s= £(10 ne2 5) s ,

First, consider the selection of s. For 8 large the distribution of
nodes zk'm and poles Yk.n does not agree at all with the distribution

suggested in theorem 2.1. In fact, for s = ®, j.e. polynomial

approximation, approximation by interpolation diverges. This follows from the

similarities of our approximation problem and the classical example of Runge,

see [2]. On the other hand, for s > 0 small the rate of convergence becomes

unnecessarily slow.

Ex. 8.1. Let n= m+ 1 and compute the rational approximant rn(z) to

£(z) for s = 1,2,3.

-27-

b

-

.

9
AL ..



e m e e i w T E e e R B

Al

}

3
-
'

Mae aean s i -TrT LB AL
‘2 .n. N i

T vTYy vy
- - -

WY S .

10-’* T . A s = 2: .
10”5
10~6

1077 - oA -~ ... L. . 4 -_.dmn
10 20 0 40 50 o0 70 80

Only points with markers in figure 6.1 correspond to computed approximation
errors. s
Example 8.1 shows that the selection of s 1is of some importance, c.f.
also example 3.2. When it is difficult to determine an appropriate allocation
of poles, a crude determination of poles combined with discrete least squares
approximation at the nodes zk,m can be a good strategy. For a justification
when the poles all are at =, see [8]. Approximation by rationals with a
different but fixed distribution of poles can be treated similarly as in
(8]. Given m nodes Zx ,m and a distribution of poles W ,n¢ One generally
does not know a priori how to select the ratio m/n. One has to select

several values of n and select the best of the computed approximants, see

{8]. The difficulties in choosing m/n are illustrated in the next example.

Ex. B.2. Consider the same approximation problem as in example 8.1 with

s = 2, bhut let ﬁ = 0.9, For m = 25, 51, 25, we let n be the even
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integer closest to 0.9m. The "+" {n figure 8.2 show the approximation

error. The dots correspond to interpolation n = m-1 and are the same as in

LA :
b

figure 8.1.
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Figure 8.2
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